| 1. | The attempt to calculate the cohesive energy of metals has scarcely been carried beyond the first column of the periodic table . 计算金属结合能的尝试几乎没有超过周期表上的第一行的范围。 |
| 2. | Valence electronic structure analysis and cohesive energy calculation of mosi 2价电子结构分析及结合能计算 |
| 3. | Cohesive energy density parameter 内聚能密度参数 |
| 4. | Calculation of cohesive energy of alloyed austenite by interatomic pair potential 原子间相互作用对势计算合金奥氏体结合能 |
| 5. | Molecular dynamics simulation of size dependent cohesive energy and lattice parameter of pb nanofilms 纳米薄膜的结合能和晶格参数的尺寸效应 |
| 6. | The molecular dynamics simulation method has been used to study the relation between the melting temperature and the cohesive energy of pb nanofilms 摘要本文利用分子动力学方法研究了铅纳米薄膜的熔化温度与结合能的关系。 |
| 7. | It is found that the relation between the melting temperature and the cohesive energy of bulk materials can be used to nanomaterials , but the coefficient depends on the height of nanofilms 研究表明,块体材料熔化温度与结合能的关系式在纳米薄膜体系仍然成立,但比例系数是一个依赖于薄膜厚度的参量。 |
| 8. | Basing on the two order tangency at initial point between isotropic curve and hugoniot curve , a new method for calculating cold energy cold pressure and cohesive energy for solid is presented in the paper , comparison with experimental data manifest that this method is very good and can be applied 利用在初始点等熵线和冲击绝热线二级相切的性质,给出了一种可用于计算固体冷能冷压和结合能的新方法,并推导了利用hugoniot参数计算结合能的公式。与实验数据的比较表明,这种方法是有效可行的。 |